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1 ABSTRACT

Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the
lifespan of highway infrastructure.  Each state typically has several dozen Weigh in Motion
stations to monitor large vehicle usage.  These stations are expensive to install and maintain, so
they are usually supplemented with many more vehicle classification stations.  Some of the
classification stations employ axle counters, but the simplest of these stations use dual-loop
detectors to measure vehicle length from the product of measured speed and detector on-time,
and classify vehicles based on this measurement.

Meanwhile, single-loop detectors are the most common vehicle detector in use to monitor traffic,
both for real-time operations and for collecting census data such as Annual Average Daily Travel
(AADT).  New, out-of-pavement detectors seek to replace loop detectors using wayside mounted
sensors, but most of these detectors emulate the operation of single-loop detectors.  In either
case, collecting reliable length data from these detectors has been considered impossible due to
the noisy speed estimates provided by conventional data aggregation at single-loop detectors.

This research refines unconventional techniques for estimating speed at a single-loop detector,
yielding estimates that approach the accuracy of a dual-loop detector's measurements.
Employing these speed estimation advances, this research brings length based vehicle
classification to single-loop detectors, (and by extension, many of the emerging out-of-pavement
detectors).  The research promises to extend vehicle classification to single-loop detector count
stations and the many single-loop detector stations already deployed for real-time traffic
management.  The work also offers a viable treatment in the event that one of the loops in a dual-
loop detector classification station fails.

The classification methodology is evaluated against concurrent measurements from video and
dual-loop detectors.  To capture higher truck volumes than empirically observed, a process of
generating synthetic on-times is developed.
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2 INTRODUCTION

Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the
lifespan of highway infrastructure.  The importance of road usage is evidenced by the federally
mandated Highway Performance Monitoring System (HPMS) and the significance of large
vehicles is reflected in the Weigh in Motion (WIM) data collected for the Long Term Pavement
Performance (LTPP) program.  Interest in the movement of these large vehicles has also
increased from the transportation planning perspective, as freight shipments are becoming more
common in the planning process.

Each state typically has several dozen WIM stations to monitor large vehicle usage.  These
stations are expensive to install and maintain, so they are usually supplemented with many more
vehicle classification stations.  Some of the classification stations employ axle counters, but the
simplest of these stations use dual-loop detectors to measure vehicle length from the product of
measured speed and detector on-time, and classify vehicles based on this measurement.

Meanwhile, single-loop detectors are the most common vehicle detector in use to monitor traffic,
both for real-time operations and for collecting census data such as Annual Average Daily Travel
(AADT).  New, out-of-pavement detectors seek to replace loop detectors using wayside mounted
sensors, e.g., the Remote Traffic Microwave Sensor (RTMS), but most of these detectors
emulate the operation of single-loop detectors.  In either case, collecting reliable length data from
these detectors has been considered impossible due to the noisy speed estimates provided by
conventional data aggregation at single-loop detectors.

This research refines unconventional techniques for estimating speed at a single-loop detector,
yielding estimates that approach the accuracy of a dual-loop detector's measurements.
Employing these speed estimation advances, this research brings length based vehicle
classification to single-loop detectors, (and by extension, many of the emerging out-of-pavement
detectors).  The research promises to extend vehicle classification to single-loop detector count
stations and the many single-loop detector stations already deployed for real-time traffic
management.  The work also offers a viable treatment in the event that one of the loops in a dual-
loop detector classification station fails.

After reviewing the related literature, this work presents the new speed estimation techniques.
Vehicle length is then estimated from the product of speed and on-time.  To capture higher truck
volumes than empirically observed, a process of generating synthetic on-times is developed.
Following the Ohio Department of Transportation (ODOT) length based classification scheme
for dual-loop detectors, the lengths are used to classify vehicles into three bins with divisions at
effective vehicle lengths of 28 ft and 46 ft.  This classification is evaluated against concurrent
measurements from video and dual-loop detectors.

2.1 Estimating Speed and Lengths
This research seeks to mainstream advances in speed and length estimation from single-loop
detectors and develop a vehicle classification methodology for these detectors.  Benekohal and
Girianna (2003) note that it is, "necessary to encourage state DOTs to include classification
counts in their annual traffic-monitoring program."  As noted in a draft research statement from
the TRB Committee on Highway Traffic Monitoring, "Classification based solely on vehicle
length is an alternative to axle-based classification but there has been no systematic study of how
well it works -- or how it should work."  The present research had to address many of these
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issues in the course of verifying the performance of single-loop detector based classification.
There has been considerable research on vehicle classification leading to the conventional
technologies as well as on-going work in emerging technologies.  Needless to say, the body of
work is broad.  Limiting the scope to loop detector based speed estimation, length estimation,
and vehicle classification, this section reviews the related literature.

For length-based classification from loop detectors, there are three interrelated parameters that
can be measured or estimated for each passing vehicle, namely effective vehicle length (l), speed
(v) and the amount of time the detector is "on", i.e., the on-time (on).  These parameters are
related by the following equation,

l = v ⋅ on (1)

At a single-loop detector, only the on-time can be measured directly, while a dual-loop detector
can measure the speed from the quotient of the detector spacing and the difference in actuation
times at the two loops.  Given two of the three parameters, obviously the third is defined by
Equation 1.  In the absence of accurate speed estimation from single-loops, these detectors
generally have not been used to estimate vehicle length or classify vehicles.

As a precursor, many researchers have sought better estimates of speed from single-loop
detectors.  The preceding research has emphasized techniques that use many samples of
aggregate flow (q) and occupancy (occ) to reduce the estimation error, e.g., Mikhalkin et al
(1972), Pushkar et al (1994), Dailey (1999), Wang and Nihan (2000), Coifman (2001).  Although
rarely noted, these techniques effectively seek to reduce the bias due to long vehicles in
measured occupancy.  Rather than manipulating aggregate data, we developed new aggregation
methods to reduce the estimation errors.

Provided that vehicle lengths and vehicle speeds are uncorrelated, (see, e.g., Coifman, 2001),
following conventional practice, speed (mean v) and assumed mean vehicle length (LA) for a
given sample are related by:

mean v ≈
q ⋅ LA

occ
(2)

This equation is an extension of Equation 1, since,

q ⋅ LA

occ
=

LA

mean on( )
(3)

and as with Equation 1, average length and average speed cannot be measured independently at a
single-loop detector.  Typically, an operating agency will set LA to a constant value and use
Equation 2 to estimate speed from single-loop measurements.  But this approach fails to account
for the fact that the percentage of long vehicles may change during the day or the simple fact that
a sample may not include "typical" vehicle lengths.  Particularly during low flow, when the
number of vehicles in a sample is small, a long vehicle can skew occupancy simply because it
takes more time for that vehicle to pass the detector.  For example, at one detector station
Coifman (2001) found that approximately 85 percent of the individual vehicle lengths observed
were between 15 and 22 feet, but some vehicles were as long as 85 feet, or roughly four times
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the median length.  This large range of average vehicle lengths arises due to the small number of
vehicles with lengths far from the center of the skewed distribution.  The median of a sample is
much less sensitive to these outliers, and

median v ≈
LA

median on( )
(4)

provides an alternative estimate of speed.  As shown in Coifman et al (2003), Equation 4
performs significantly better than Equation 2, and in fact it approaches the accuracy of dual-loop
detector measurements for that study's data.

There have also been several efforts based on time-series trends in flow and occupancy to
estimate the percentage of vehicles passing a single-loop detector that are long.  Kwon et al
(2003), developed a method employing aggregate flow and occupancy from single-loop detectors
to estimate the percentage of long vehicles that passed.  The work depends on two fundamental
assumptions: the presence of a truck-free lane, and that the detector station exhibits high lane-to-
lane speed correlation.  They employed conventional detectors, used many days, using several
stations from three facilities.  The work only validated the results against aggregate dual-loop
measurements and WIM data.  The former yielded good results, while the latter had 20 percent
overestimation, highlighting the importance of employing a truly independent measure of ground
truth.  The research studied facilities with low to moderate truck volumes (under 10 percent of
the fleet) and did not explicitly single out performance in congested conditions. In fact they note
that, "the estimate of truck volume is biased and unstable at the start of the congestion period."

Wang and Nihan (2003, 2004) also developed a method employing aggregate flow and
occupancy from single-loop detectors to estimate the percentage of long vehicles that passed.
Like Kwon et al, their work also depends on two fundamental assumptions, though slightly
different, "constant average speed for each [three minute long] time period and at least two
intervals containing only [short vehicles] in each period."  They employed conventional
detectors, used many days, using four detector stations.  Also like Kwon et al, the work only
validated the results against aggregate dual-loop measurements.  The research studied facilities
with low to moderate truck volumes (under 10 percent of the fleet) and did not explicitly single
out performance in congested conditions.  These authors note, "the algorithm should work better
under less congested conditions."  The authors also explicitly note the limitation of the small
number of test sites, stating that, "future research is needed to handle the conditions when one or
both of the assumptions are violated in order to reduce estimation errors.... The proposed
algorithm will be more robust and accurate when the violation circumstances are properly
addressed."  More recently, this group has revised their methodology (Zhang et al, 2006).  This
recent study is subject to many of the same limitations as their earlier work, it employs aggregate
flow and occupancy, was tested at only two detector stations (with approximately 10 percent
truck flows), and only compared the results against aggregate dual-loop detector measurements.
The final conclusion of Zhang et al states that although the method produced favorable bin
volumes, further improvements to its performance are possible through optimizing its design and
training, especially under heavily congested conditions.

There have also been efforts to use new loop detector sensors to measure the inductive vehicle
signature for vehicle classification, e.g., Reijmers (1979) and Gajda et al (2001).  While these
inductive signature based efforts are promising, the published studies typically employ validation
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sets on the order of 100 vehicles.  Conventional binary loop detector output remains by far the
dominant configuration for single-loop detectors.

As noted earlier, most of the non-invasive vehicle detectors that have entered conventional
practice mimic the operation of single-loop detectors, the two most prevalent examples of these
detectors being the SmartSensor by Wavetronix and RTMS by EIS.  Both sensors can provide
length based classification data, though the specific algorithms are proprietary.  While the
sensors often provide reasonable counts and speed estimates in aggregate data, per-vehicle
analysis has shown that the aggregate data allow over-counting errors to cancel under-counting
errors and that individual vehicle on-times can be subject to large errors (see, e.g., Zwahlen et al,
2005; Coifman, 2006a).  The literature is surprisingly lacking in terms of evaluating the
classification performance from these sensors.  Among the few available studies, Zwahlen et al,
(2005) evaluated the SmartSensor in uncongested, low volume traffic, with low truck flows.
While these conditions should lead to favorable performance by the sensor, after comparing the
classification results against manually generated ground truth data the authors concluded that,
"vehicle classification is unreliable; the fraction of trucks in a lane can be severely overestimated
or underestimated."  Trucks were undercounted by as much as 80 percent in the worst case and
"at this time, the system does not reliably estimate the number of trucks in the traffic stream."
French and French (2006) examined the performance of RTMS and SmartSensor, including
vehicle classification, at four temporary locations and three fixed locations. Even though
manufacturer representatives calibrated the detectors the reported truck counts from the non-
invasive detectors were typically off by a factor of two and sometimes as much as ten. Almost all
of the test locations were characterized by low truck flows, below 5 percent of the traffic.  So
while the manufacturers offer vehicle classification from these non-invasive sensors, the specific
algorithms are undocumented and to the extent that they have been evaluated in the literature, the
performance is poor.

Returning the focus to conventional single-loop detectors, the present research seeks to estimate
vehicle lengths and classify vehicles.  Assuming the loop detector is functioning properly,
Equation 1 shows that a given on-time measurement is simply a function of the vehicle's length
and speed.  During free flow conditions the vehicle speeds typically fall in a small range and
during congested conditions the difference between two successive vehicles' speeds is usually
small.  If one assumes that all of the vehicles in a sample are traveling near the median speed,
one can use Equation 4 in conjunction with measured on-times to estimate individual vehicle
lengths.  Of course the number of vehicles per sample must be small enough for the speed
assumption to hold and one must control for low speed conditions, when acceleration becomes
non-negligible within the sample.  Using samples of ten consecutive vehicles and restricting the
analysis to samples with v>20 mph (from Equation 4), Coifman et al (2003) found the average
absolute error in estimated length (via Equation 1) is less than six percent for 210,000 vehicles in
the sample data set.

In the presence of heavy truck traffic, e.g., 40-60 percent of the flow, the improvements from
Equation 4 degrade because of the high variability in sample median vehicle length.  Using data
from a detector with heavy truck traffic, Neelisetty and Coifman (2004) developed a
methodology to address this problem.  As demonstrated in Neelisetty and Coifman, two
consecutive vehicles usually have similar speed, even during congestion, and thus, from
Equation 1, the ratio of the on-times is a good approximation of the ratio of their lengths.  The
extension explicitly recalibrates speed estimates by looking for two consecutive vehicle
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measurements possessing the longest feasible vehicle length and the shortest feasible length,
roughly 80 ft and 18 ft, respectively or a ratio of 4:1 in successive on-times.  When this ratio is
observed in the on-times, one then knows the vehicle lengths in addition to the on-times and can
use Equation 1 to estimate speed.  Further checks are then made to eliminate transient detection
errors that would otherwise disrupt this speed estimation.  The paper reported an average
absolute percent error under six percent for a detector with heavy truck traffic, but the site also
had little congestion.

3 IMPROVED SPEED ESTIMATION FROM SINGLE-LOOP DETECTORS

This research set out to estimate speed using a combination of the moving median method of
Equation 4, Coifman et al (2003) and the sequence method of Neelisetty and Coifman (2004).
Some shortcomings were encountered and a third technique was devised that examines the on-
time distribution within a sample (henceforth called the distribution method).  The research also
considered the conventional speed estimates from Equation 2.  Details of the three non-
conventional speed estimation methods follow.

3.1 Moving Median Method
For this study, the median on time in Equation 4 is taken from a fixed window of 33 vehicles
centered on the current vehicle.  The window moves by one vehicle each sample, hence "moving
median".  This same window is used when applying the conventional speed estimate from
Equation 2 as well as the other non-conventional methods.  In any case, the fixed number of
vehicles ensures that there will be many vehicles in the sample, even during periods of low flow.

3.2 Sequence Method
If the percentage of long vehicles can fluctuate from sample to sample, then the true value of L
in Equation 2 will vary as well.  If the fluctuation is large enough, the true value of L in Equation
4 will also vary.  Following Neelisetty and Coifman (2004), the on-time ratio between two
successive vehicles should be proportional to their length, even during congestion.  For most
pairs of successive vehicles this fact does not help; however, when the two successive vehicles
are the longest and shortest vehicles, one can deduce their lengths directly from the on-times.
From Figure 1A, the longest vehicles are about 70 ft and the shortest are about 20 ft, i.e., a ratio
of 3.5:1.  In the absence of detector errors, this length ratio can only be observed from such a pair
of long (LV) and short (SV) vehicles, i.e., SV followed by LV; or LV followed by SV.  To
accommodate the fact that these two populations have some variability in lengths and that the
speeds might not be exactly equal, the method looks for ratios between successive on-times that
fall in the range of 3.0 to 4.5.  When such a ratio is observed in the on-times, Equation 1 is used
to estimate the speed of the two vehicles given lSV

A =20 ft and lLV
A =70 ft, i.e.,

ˆ v SV =
lSV

A

onSV

;      ˆ v LV =
lLV

A

onLV

(5)

If there are multiple sequences within sample, the algorithm keeps estimating speed for each
sequence and then assigns the median speed from all of the individual estimates to all vehicles
within the sample.  Otherwise, when there are no such sequences within the sample, the
algorithm falls back to the moving median method.  After working with the sequence method it
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was found that it fails too frequently during congestion.  The assumption that two successive
vehicles have the same speed simply does not hold at low speeds when acceleration is non-
negligible, typically when speeds drop below 10 mph in stop-and-go traffic.  When truck
volumes are low, e.g., under typical urban conditions of around 10 percent, the sequence method
uses only a few vehicles in the sample to estimate speed, making it vulnerable to making large
errors if these vehicles are measured incorrectly or if the pair of vehicles used to estimate speed
are far removed from the subject vehicle (i.e., the pair fall at the start or end of the sample of 33
vehicles) and speed varies significantly over the sample.

3.3 Distribution Method
The limitations of the Sequence method in congestion led to the development of a new method
that considers the entire distribution of on-times observed in a sample.  As with the moving
median, vehicles are sampled in a moving window of a fixed number of 33 vehicles, centered on
the subject vehicle.  The measurements are sorted into bins by every 1/6 sec and a moving
average of three bins is taken.  If this sample exhibits a clear bimodal distribution, e.g., as seen in
Figure 1B, then the two peaks can be localized and the speeds estimated using Equation 5.  If the
resulting distribution is not bimodal, a series of steps are taken to estimate the speed.  The details
of the process are as follows.

First check to see if the sample exhibits the expected bimodal distribution, i.e., establish whether
there are two peaks.  If so, following the same logic used in the Sequence Method, check to see if
the ratio between the two mode on-times is in the neighborhood of 3-4.5.  Explicitly enumerating
the steps,

1) find the dominant mode on-time, i.e., the largest peak

2) search for observations within 3 to 4.5 times larger than the dominant mode

3) search for observations within 3 to 4.5 times smaller than the dominant mode

4) compare the number of observations (2) and (3) to decide which one has more
observations

5) if a clear secondary peak from (4) emerges with three (just under 10 percent of the
sample) or more vehicles, the sample is considered bimodal and analysis continues to
(6), otherwise, the sample is treated using one of the techniques that follow

6) assign assumed average vehicle length to the dominant mode based on the location of
the secondary peak with more observations from (4) ( lSV

A  or lLV
A ) and estimate speed

from Equation 5

As will all steps in this method, once a mode has been identified, the exact on-time is determined
by taking the median of all of the individual on-times within the mode.  With the threshold of 10
percent of the vehicles having to fall in the secondary peak before the distribution is considered
bimodal, one would frequently expect samples to be classified as unimodal, e.g., in practice it is
not uncommon to find that all 33 vehicles within a sample are passenger vehicles yielding a
unimodal on-time distribution.  For these unimodal distributions, taking 45 mph as a
conservative lower bound to free flow conditions, using Equation 1 one can calculate the feasible
on-times for SV and LV under different traffic conditions.  The on-time of 20ft vehicle at 85
mph should be 0.16 sec and at 45 mph should be 0.3 sec.  Similarly the on-time of 70 ft vehicle
at 85 mph should be 0.6 sec and at 45 mph should be 1.1 sec.  In other words,
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Region 1- 0.16 < mode(on-time) < 0.3: 20 ft vehicle traveling above 45 mph (free flow)

Region 2- 0.3 < mode(on-time) < 0.6: 20 ft vehicle traveling below 45 mph (congestion)

Region 3- 0.6 < mode(on-time) < 1.1: Either 20 ft traveling below 45 mph or 70 ft
vehicle traveling above 45 mph (uncertain)

Region 4- 1.1 < mode(on-time): Either 20 ft or 70 ft vehicle traveling below 45 mph
(congestion)

For each sample the dominant mode on-time will fall in one of these four regions.  If the
dominant mode falls within Region 1 or 2, it can be deduced directly that the mode corresponds
to a SV and speed can be estimated from Equation 5.  In region 4 it is not clear what the
dominant vehicle is, but it is clearly congested.  The largest ambiguity arises in region 3, the
mode is either due to free flowing LV or congested SV.  To identify the traffic condition of a
unimodal sample falling in region 3, we apply the following three tests:

Occupancy filter: Empirically, low occupancy corresponds to freely flowing traffic with
low flow (Jain and Coifman, 2005).  Therefore, a sample can be considered as free
flowing if its occupancy is less than a certain threshold (15 percent in this study).  If so,
speed is estimated from Equation 5 assuming the mode corresponds to a LV.  Otherwise,
analysis continues with the next two steps in parallel,

On-time variance: In general speed during free flow is more stable than during
congestion because a common feature of congested traffic is acceleration and
deceleration waves.  Furthermore, the relative impact to on-time of a given small speed
fluctuation (e.g., 1 mph) is inversely proportional to speed.  For the same level of speed
fluctuations the variation of on-time during free flow is less than congestion.  An on-time
sample variance of 0.11 [sec2] is used as the threshold between free flow and congested,
as derived from empirical analysis of dual-loop data.

Estimated speed from previous sample: Two successive samples will typically have
similar speeds, i.e., the transitions between free flow and congestion are only observed a
few times a day (if at all). So if a unimodal distribution is found with the mode in Region
3 in one sample, the estimated speed from the preceding sample is used as a proxy for the
traffic condition of the current sample.

If the sample is deemed congested by the on-time variance and this result is consistent with the
previous sample, speed is estimated from Equation 5 assuming the mode corresponds to a SV.
Likewise, if both tests indicate that conditions are free flowing, then speed is estimated from
Equation 5 assuming the mode corresponds to a LV.  If none of the above cases are met, then the
sample is treated as an exception, as discussed below. (As presented in Coifman, 2007, most of
the non-exception samples are assigned to the correct traffic condition).

When the mode falls in Region 4, traffic has to be congested, whether the dominant vehicle is
long or short. But differentiating between the possible vehicle lengths is necessary to get an
accurate speed estimate. Given a unimodal distribution, one cannot differentiate between the two
situations.  So the algorithm increases the sample size to 51 vehicles and examines whether the
distribution has changed to a bimodal distribution or remains a unimodal distribution.  If the
larger sample turns out to have a bimodal distribution then the vehicle corresponding to the
dominant mode (LV or SV) is assumed to apply to the single mode of the smaller sample and
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used to estimate speed from the smaller sample via Equation 5. Otherwise, the sample is also
treated as an exception.

There are three exceptions where the above methodology is not applied to estimate speed for a
given sample, namely,

• Samples whose distributions have more than two modes

• Unimodal samples falling in Region 3 that are not filtered from the three tests

• Samples falling in Region 4 that still have unimodal distribution after expanding the
sample size

Since it is not likely to observe 33 successive long vehicles in a lane, the shortest on-times likely
come from passenger vehicles.  So for the exceptions, the second shortest on-time measurement
within each sample is taken and assumed to come from a passenger vehicle.  Taking the second
shortest reduces sensitivity to detector errors that might cause erroneously short on-times.  Speed
is then estimated from this on-time using SV in Equation 5.  Thereby estimating speed for one of
the faster passenger vehicles in the sample and assuming it applies to all of the vehicles in the
sample.  Finally, note that these exceptions are relatively uncommon, comprising less than one
percent of the samples in Coifman (2007).

4 PERFORMANCE EVALUATION AGAINST DUAL-LOOP DETECTORS

The four speed estimation methods were evaluated in two ways, first in terms of the actual
measured on-times (upstream loop) and speeds from dual-loop detectors on I-71 in Columbus,
OH (Coifman, 2006b).  The monitored portion of I-71 extends from the central business district
(CBD) to the northern suburbs, as highlighted in Figure 2A.  The deployment covered roughly
14 miles, with dual-loop detector stations every mile and an average of two single-loop detector
stations between each successive pair of dual-loop detector stations.  The detector stations report
individual transition data whenever a given detector becomes occupied or clears with each
vehicle that passes, sampled at 240 Hz.  As with the earlier speed estimation studies, the dual-
loop detectors provided a ready source of ground truth for vehicle speeds and lengths.  Also like
the earlier studies, except for a few detectors, these urban data are characterized by relatively low
truck volume.  Figure 1A shows a typical distribution of individual vehicle lengths observed in
this corridor over a 24 hr period.  As with most stations, this bimodal distribution is characterized
by a tall, narrow peak around 20 ft due to passenger vehicles and a shorter and broader peak
around 70 ft due to longer vehicles.  Figure 1B shows the corresponding on-times from known
free flow periods.

But one of the objectives of this research is to extend single-loop based length classification to
detectors with high truck volumes.  Which leads to the second evaluation, data with higher truck
volumes were synthesized by combining individual measured speed and arrival times from a
dual-loop detector station that experiences recurring congestion with synthetic vehicle lengths
for the vehicles and then calculating the new set of on-times that would result from Equation 1.
Needless to say, the actual lengths and on-times are discarded.  Each synthetic vehicle length
was determined via a two-step process, first randomly determine whether the given vehicle was
long or short based on the desired percentages of each type of vehicle (the threshold between the
two groups was set at 50 ft, to fall between the two modes, e.g., Figure 1A).  Then for the given
vehicle type, randomly sample a synthetic vehicle length from an empirically observed
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distribution of either LV or SV lengths at a dual-loop detector station.  This new length is
assigned to the vehicle and the corresponding on-time is calculated via Equation 1.  The
individual vehicle speed and synthetic length are stored for validation purposes.  When
estimating speed for the conventional method (Equation 2) with synthetic data, the process of
synthesizing the data has disrupted the occupancy and the new off-times are inaccurate.  So
instead, we calculate mean(on) and employ Equation 3 to estimate speed.  All three of the non-
conventional methods only use the on-times and they are not impacted by the disruption to the
off-times.

4.1 Speed Estimation
The four speed estimation methods were applied over the same fixed sampling windows of 33
vehicles, to the measured on-times from the upstream loops at all 13 operational, northbound
dual-loop detectors on I-71 for the entire month of April 2005.  The cumulative distribution
function (CDF) of the absolute error in speed estimation relative to the measured speed from
each of the four methods was calculated over the month at each station.  Figure 3 summarizes the
results, tabulating the 90th percentile of the absolute difference between the each estimate and
the corresponding measured speed (Figure 3A-D) and measured length (Figure 3E-H) over the
entire month for each lane at each station.  All three of the new estimation methods yield similar
performance, and this performance is generally better than the conventional method.  Among the
three new methods, the sequence method yields slightly poorer results

Moving to the synthesized data from station 1 for the same month, the percentage of LV was
varied from 10 to 90 percent in 10 percent increments.  Performance relative to the measured
speed and measured vehicle length were examined, with similar results.  Figure 4 shows the CDF
of the absolute error in speed estimation relative to the measured speed from each of the four
methods, over the month of synthetic data.  Each row corresponds to a different method and each
column corresponds to a different lane.  In each subplot of Figure 4A-B the CDFs forms a fan,
with the 10 percent LV with the smallest errors on the far left and 90 percent LV with the largest
errors on the far right.  Note that throughout this figure the synthetic data with 10 percent LV is
comparable to the results with measured data (see Coifman, 2007 for details).  If one only
examined the 10 percent LV curves, there is little difference between the three non-conventional
methods, while the errors are roughly twice as large in the conventional method.  At higher truck
volumes, both the conventional method and the moving median method degrade due to the fact
that LA in Equations 2 and 4 is no longer representative of the vehicle fleet.  As the fleet becomes
more homogeneous at higher truck flows, conceivably the errors could be countered at least in
part by actively selecting a new value for LA.  But when the percentage of trucks and cars vary
throughout the day or if the two groups are roughly equal in numbers, even such a recalibration
will fall to solve all of the problems.  In contrast, the sequence method and distribution method
show little change in performance as the percentage of long vehicles increases.  In other words,
for these two methods there is no need to recalibrate lSV

A  and lLV
A  in the presence of different

percentages of trucks.  Close inspection of Figure 4C-D reveals that the distribution method has
smaller errors.  The difference between the two methods is more apparent in Figure 5A-B, which
tabulates the average absolute difference between each estimate and the corresponding measured
speed over the month, across all lanes at station 1, as the percentage of trucks varies between 10
and 90 percent.  The figure presents separately the results during free flow and congestion, using
a measured speed of 45 mph as the threshold.  The sequence method has a higher absolute
average error because the method typically only uses a small number of the on-times observed in
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a given sample, and thus, is more sensitive to detector errors and changes in speed over the
sample.  The process was repeated in Figure 5C-D for the estimated length, with similar results.
As a result, the distribution method will be used throughout the remainder of this work.

While reviewing Figure 5C-D, note that the average absolute errors should be expected to
increase as the truck flows increase because the average vehicle length increases.  Whether
looking at speed or length, the estimation errors increase significantly during congestion.
Although not readily apparent in these plots, all four methods exhibited degraded performance
during heavy congestion, overestimating vehicle lengths for passenger vehicles when speeds
were below 20 mph (see Coifman, 2007 for details).  This problem arose for several reasons;
first, even with samples of just 33 vehicles, the chosen speed for the sample may not be
representative of a specific vehicle's speed.  Second, at these low speeds, acceleration becomes
non-negligible, impacting both the measurements and the estimates.  When measured speeds are
above 20 mph, both the sequence method and distribution method yield good results.

4.2 Length Based Classification
Using the same month of data, the measured and estimated lengths are calculated (via the dual-
loop detectors and distribution method, respectively) for the 13 operational, northbound dual-
loop detectors on I-71.  These lengths are then used to classify the vehicle following the ODOT
dual-loop detector, length based classification scheme: three bins are used with divisions at
effective vehicle lengths of 28 ft and 46 ft.  Using the estimated length and repeating with the
measured length, each vehicle is sorted into one of the three classes.  Then the two classifications
per vehicle are compared one with another.  If the two classes are identical, it is considered a
correctly classified vehicle.  Otherwise, it is considered as either an over-classified vehicle
(estimated class is higher than the measured class) or an under-classified vehicle (estimated class
is lower than the measured class).  Performance during free flow and congestion are examined
separately (again, using measured speed of 45 mph as the threshold).  The total of correctly
classified, over-classified and under-classified vehicles are found in each lane for free flow and
congestion, the totals are presented in Figure 6.  Each station is presented in a different column
in the subplots, while the same column is used for the given station in all six subplots.  Each
column has 60-120 points, one point per lane per day in the month.  Figure 6A shows the
percentage of free flow vehicles correctly classified each day, Figure 6B shows the percentage
over-classified each day, and Figure 6C plot shows the percentage under-classified each day.
Over 97 percent of the vehicles are correctly classified at each station.  Between the two errors,
over-classification is dominant because the vast majority of vehicles passing through the I-71
corridor are passenger vehicles, falling in class 1 and cannot be under-classified.  Figure 6D-F
repeat this analysis for congested conditions.

Turning to the month of synthetic data at station 1 to emulate detector measurements under
different percentages of long vehicles, Figure 7 shows a box plot of the monthly data for each
percentage of long vehicles.  As with Figure 6, one point is generated per lane per day, for a total
of 120 points underlying each column at this station with four lanes.  In each box plot, the top
and bottom edge of a box show the first and third quartiles and the horizontal line within the box
shows the median value of the observations.  The top and bottom edges denoted with "T" are
boundaries of the maximum and minimum values of the observations, while a plus shape denotes
an outlier (defined to be 1.5× interquartile beyond the nearest quartile).  Figure 6A shows that
during free flow the median performance is roughly constant across the different percentages of
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long vehicles, falling above 99 percent in each case, indicating that the classification
methodology is not sensitive to the percentage of long vehicles.  Figure 6D shows that during
congestion the monthly median of the correctly classified vehicles falls between 80 and 90
percent.  Although the performance is worse than under free flow conditions, it is still roughly
consistent across the different percentages of long vehicles.  Of course the percentage of over-
classified vehicles drops and under-classified vehicles increases as the percentage of long
vehicles increase, simply because class 1 vehicles can not be under-classified and class 3
vehicles can not be over-classified.

5 PERFORMANCE EVALUATION AGAINST MANUALLY EXTRACTED DATA

While performance against dual-loop detector data is good, the fact remains that dual-loop
detectors are also capable of making errors, e.g., if they measure the on-time incorrectly, then
length calculated from Equation 1 may agree with the dual-loop measurement while both the
measurement and estimate are equally incorrect.  To control for the possibility of such errors that
may impact the dual-loop measurements and single-loop estimates in the same way, this research
also collected concurrent detector data and video data at two locations to test the performance of
single-loop detector estimated length based vehicle classification.  Both locations are shown on
the map of Figure 2A, while a sample frame from each site is shown in Figures 2B-C.

The first test location is a classification station on I-70, just east of Brice Rd.  The station is
equipped with dual-loop detectors and a piezo electric axle detector in each of the three
eastbound lanes, normally used to bin vehicles into the 13 FHWA vehicle classes (see, e.g.,
FHWA, 2001).  The station was observed midday, under clear weather and free flow conditions
from 10:13 to 14:00, on June 20, 2006.  All told, almost four hours of data were recorded and,
9,746 vehicles were seen.  The measured speed and length were also recorded for these vehicles.
A software tool was developed to semi-automate the extraction of ground truth data from the
video (inspired in part by VideoSync, Caltrans, 2007). The tool allows the user to manually
measure vehicle length after synchronizing the detector and digitized video data.  See Coifman
(2007) for details of this tool, for the purposes of this paper, it is sufficient to note that care was
taken in the selection of the camera angles to ensure a view angle perpendicular to the roadway
(Figures 2B-C) so as to reduce the impacts of projection errors on the video based vehicle
lengths. Likewise, the video based vehicle lengths were measured as close to the base of the
vehicle as possible.

Figure 8A compares the estimated length from on-times versus manually measured length across
all lanes.  Most of the points fall close to the diagonal, indicating the estimates are generally
close to the measurements.  Figure 8B clusters these points based on the resulting length class
from the estimated and measured length.  The correctly classified vehicles fall in the three cells
on the diagonal, while the other six cells tally the various misclassifications.  Figure 8C-D repeat
the exercise using the measured lengths reported from the dual-loop detectors against the
manually measured lengths.  Comparing Figure 8A and C, the plots show the reported lengths
are closer to the manually measured lengths than the estimated lengths are.  However, Table 1
summarizes the classification results, and as evident, the classification performance is very
similar whether using estimated or reported length.  This result arises from the fact that the
classification scheme is tolerant to large length estimation errors provided the true length is far
from the boundary between two classes.
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The second test location is station 9 on I-71, a single-loop detector station just south of Hudson
St, used for real-time traffic management, with single-loop detectors in each of the three lanes, in
each direction.  This station was chosen because it is closest to an existing close circuit television
camera.  Detector data and concurrent video were collected for two hours between 12:20 and
14:20, on June 5, 2006, under clear weather and free flow conditions, with a total of 15,251
vehicles recorded by the detectors.  Once more the ground truth software was used to manually
measure every vehicle length.  Of these actuations, 441 do not correspond uniquely to a passing
vehicle in the video, and instead were due to the detector "dropping-out" in the middle of a long
vehicle and causing "pulse-breakup," i.e., semi-trailer trucks frequently resulted in two or more
pulses when these trucks should have only been recorded as a single pulse.  These errors
highlight the importance of having a validation measure independent of the loop detectors,
because the pulse break-ups would degrade performance of dual-loop length measurements as
well.

After accounting for the pulse-breakups, 6,998 southbound and 6,648 northbound vehicles were
ground truthed.  Figures 8E and G compare the estimated length against the manually measured
length in the two directions.  In both plots the pulses found to be due to breakup are shown in a
lighter shade.  Figures 8F and H cluster these points based on the resulting length class from the
estimated and measured length and again, show the results including those vehicles impacted by
pulse-breakup and in parentheses repeats the statistics without the vehicles impacted by pulse-
breakup.  As before, the correctly classified vehicles fall on the diagonal and the totals are
summarized in Table 1.

From Table 1, after excluding pulse-breakups at the I-71 test-site, the methodology had an
accuracy of over 99 percent for class 1 and over 93 percent for class 3, while performance was
over 74 percent accurate for class 2.  Of course these results are mid-day, without congestion.
The lower performance in class 2 appears to be due in part to the fact that most of the class 2
vehicles are close to the lower boundary and are frequently misclassified as class 1.  A similar
error rate was observed for class 2 when using the reported vehicle length measured by the dual-
loop detectors (last column of Table 1).  Most misclassified long vehicles at the I-71 test-site
were due to pulse-breakup.  When the pulse-breakups are included, the on-times for long
vehicles are too short and many class 3 vehicles are misclassified, as evident in Table 1.  Even
including these errors, from Figure 8F and H, very few of the errors were more than one class
away from true.

6 CONCLUSIONS

Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the
lifespan of highway infrastructure.  Each state typically has several dozen vehicle-classification
stations to monitor large vehicle usage, the simplest of these stations use dual-loop detectors to
measure vehicle length.  Meanwhile, single-loop detectors are the most common vehicle detector
in use to monitor traffic, both for real-time operations and for collecting census data such as
AADT.  Collecting reliable length data from these detectors has been considered impossible due
to the noisy speed estimates provided by conventional data aggregation at single-loop detectors.
This research has questioned those assumptions, demonstrating length based vehicle
classification on freeways from single-loop detectors under a wide range of traffic conditions,
yielding estimates that approach the accuracy of a dual-loop detector's measurements.  The
research promises to provide a lower cost means of collecting vehicle classification data, provide
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a software based solution when one of the detectors in more sophisticated classification station
fails, and extend classification to traffic monitoring stations already deployed for real-time traffic
management in urban areas.  In fact the classification work could allow these urban traffic
management systems to better monitor freight traffic within the metropolitan areas.

The present study developed a length based classification methodology from single-loop
detectors.  In the process, it lead to improved speed and length estimates from single-loop
detectors.  This work is equally applicable to the non-invasive detectors such as the RTMS and
SmartSensor that seek to replace loop detectors using wayside mounted sensors by emulating the
operation of single-loop detectors.

The work started by refining our existing speed estimation algorithms to accurately estimate
speed under a wide range of traffic conditions: free flow to congested, as well as ranging from
low to high truck volumes.  An important innovation of this work was the synthetic data used to
capture higher truck volumes than empirically observed.  Following the ODOT length based
classification scheme for dual-loop detectors, the lengths are then used to classify vehicles into
three bins.  This classification is evaluated against concurrent measurements from video and
dual-loop detectors.

Unlike earlier efforts to classify vehicles from single-loop detectors, this work does not employ
aggregate data, instead, it uses the individual vehicle actuations and explicitly classifies each and
every vehicle.  This point is important, because the earlier efforts that relied on aggregate
measurements from dual-loop detectors allow over-counting errors to cancel undercounting
errors, so the reported results in the earlier studies may be overly optimistic.  Unlike the earlier
studies, this work considered truck volumes over 10 percent of the fleet, explicitly generating
synthetic detector data to simulate truck volumes up to 90 percent.  Furthermore, this work did
not rely strictly on dual-loop detectors for validation, we manually generated ground truth
vehicle length data from concurrent video for approximately 25,000 vehicles.  The manual
verification from video ensured that any detector errors that might impact the dual-loop
measurements would not bias the results.  As it stands, in the process of generating these ground
truth length data, we found loop detectors were dropping-out in the middle of semi-trailer trucks,
a problem that impacted both dual and single-loop detector classifications alike.

Performance of the methodology degrades during congestion due to the fact that we estimate a
"typical" speed within a sample of many vehicles and a given vehicle may have a speed that is
far from typical within a congested sample.  The speed estimation methods can be used to
reliably detect congested conditions, so results during such periods can at least be identified by
the current methodology and weighted appropriately.  There is likely room for further
improvement in estimating individual vehicle speed from single-loop detectors during heavy
congestion.

Table 1 shows that the length based single-loop detector estimation classification results are very
close to the dual-loop detector measured length based classification results for the I-70 test-site
and, after excluding pulse-breakup, the I-71 test-site.  But one cannot summarily exclude pulse-
breakups based on the ground truth data and the fact remains that stations installed to measure
speed might not count vehicles as accurately as a station deployed and tuned primarily to classify
vehicles.  So work remains to investigate the feasibility to catch detector errors.
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Figure 1,	 (A) Example of bimodal distribution of measured length, and (B) the 
corresponding bimodal distribution of on-times.

(A) (B)

0

50

100

150

200

250

300

350

400

450

500

nu
m

be
r o

f O
bs

er
va

tio
ns

0 20 40 60 80 100 120
Measured Length(feet)

0 20 40 60 80 100 120
0

On-Time(1/60sec)

100

200

300

400

500

600

nu
m

be
r o

f O
bs

er
va

tio
ns

TRB 2008 Annual Meeting CD-ROM Paper revised from original submittal.



Figure 2,	 (A) Freeway network in Columbus Ohio, highlighting the instrumented portion of 
I-71 and the two test sites. Sample frames from (B) I-71 test site, and (C) I-70 
test site.
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Figure 3,	 Absolute estimation error at 90th percentile in speed: (A) lane 1 (median), (B) 
lane 2, (C) lane 3, (D) lane 4 (shoulder) and in length (E) lane 1, (F) lane 2, (G) 
lane 3, and (H) lane 4.  
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Figure 4,	 CDF of the absolute error (AE) from the speed estimation over one month (April, 2005) for 
station 1 when the percentage of trucks varies between 10% and 90%, (A) Conventional 
Method, (B) Moving Median Method, (C) Sequence Method, (D) Distribution Method. Each 
column corresponds to a different lane, as indicated.
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Figure 5,	 Average absolute error (AAE) in estimated speed across all lanes for the Sequence and 
Distribution methods when measured speeds are (A) above 45 mph, (B) below 45 mph, 
and the corresponding measures for estimated length (C) and (D). Note that the vertical 
scale is larger in (D).
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Figure 6,	 Monthly summary plot for vehicle classification during free flow conditions (A)-(C) and 
congestion (D)-(F), all lanes, all stations (one point per lane per day), (A) & (D) % of correctly 
classified vehicles, (B) & (E)  % of over-classified vehicles, and (C) & (F) % of under-
classified vehicles.
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Figure 7,	 Box plot for vehicle classification during free flow conditions (A)-(C) and congestion (D)-(F) at 
station 1 northbound over one month when the percentage of trucks varies between 10% 
and 90%. (A) & (D) % of correctly classified vehicles, (B) & (E) % of over-classified vehicles, 
and (C) & (F) % of under-classified vehicles.
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Figure 8,	 (A) Estimated length versus measured length at I-70 test site, (B) corresponding length based 
classifications, (C) reported length versus measured length at I-70 test site, (D) corresponding 
classifications, estimated length versus measured length at I-71 test site (E) southbound, (G) 
northbound, and corresponding classifications, (F) southbound, (H) northbound.
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TABLE 1: Percent of correctly classified vehicles in each class at I70 and I71 test sites

I70 at 
Brice

Reported length 
compared to measured 

length
Class 1 99.6% 99.7%
Class 2 76.4% 79.9%
Class 3 97.2% 97.6%
I71 at 

Hudson
Southbound with pulse 

break-up
Northbound with pulse 

break-up
Class 1 99.1% 99.7%
Class 2 73.3% 72.6%
Class 3 71.1% 31.5%
I71 at 

Hudson
Southbound excluding 

pulse break-up
Northbound excluding 

pulse break-up
Class 1 99.1% 99.7%
Class 2 74.1% 74.4%
Class 3 93.8% 94.0%

Estimated length compared to measured length
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