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ABSTRACT 
The primary objectives of this research were to analyze a hypothesis that traffic data from a basic 
sensor located near a signal stop bar, combined with signal state data, can be used to estimate 
arterial traffic conditions (congestion); develop a prototype analytical method to test that 
relationship, and evaluate requirements and other issues associated with future application of the 
method.  

Specifically, lane occupancy percentage values from a sensor located just upstream from 
a stop bar for an arterial traffic signal, when appropriately filtered by signal state data to 
determine occupancy during green and amber phases only, were hypothesized to be associated 
with nearby arterial performance (such as congestion or traffic delay), and this relationship was 
proposed to be used to develop a basic arterial performance estimation method. 

From the results analyzed, the use of occupancy values from a stop bar sensor during the 
green and amber signal states shows promise as an indicator of arterial performance, and the 
hardware and analytical requirements for the method do not appear restrictive. Additional testing 
of the robustness of this method would be beneficial, to further document the applicability of the 
method for different scenarios. 
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INTRODUCTION 
The Washington State Department of Transportation (WSDOT) has a long history of developing 
freeway data archives and freeway performance monitoring capabilities.  The WSDOT’s 
research efforts have produced a performance monitoring methodology and tool set that have 
been deployed to monitor instrumented freeways with the assistance of the WSDOT’s FLOW 
system of detectors and data archiving processes. Given the inherent interaction between the 
freeway and arterial networks, analogous monitoring capabilities for the arterial component of 
the state road network would be useful for both the transportation engineer and the general 
public. This research focuses on exploring a method of monitoring arterial performance that 
complements existing freeway monitoring techniques, from a roadway operations and planning 
perspective as well as a traveler information perspective. 

The following were the objectives of this research: 
 

• Explore potential methods to monitor arterial performance using basic stop bar sensor 
data; use signal data as a filter to estimate occupancy during green and amber signal phases only.   
• Develop a prototype method for arterial monitoring and test it by using simulated data 
calibrated for a real-world corridor. 
• Evaluate the feasibility for deployment, and the potential functional specifications, of 
signal systems and sensor systems required to make the method workable in practice. 

BACKGROUND 
This research effort to develop an arterial performance monitoring technique is an outgrowth of a 
longstanding WSDOT research effort to archive traffic data and apply that archive to develop 
useful performance monitoring capabilities for Washington state’s freeways (1). In 1995, 
WSDOT initiated an applied research and development program with the Washington State 
Transportation Center at the University of Washington (TRAC-UW) to develop an analytical 
methodology and tool set that exploits the potential of the WSDOT FLOW data archive to 
support freeway performance monitoring and management activities. The resulting freeway 
performance monitoring methodology, TRACFLOW, was developed to analyze mainline 
freeway lanes in instrumented regions of the state, using the WSDOT FLOW archives.  

The arterial monitoring approach described in this paper was designed to complement 
TRACFLOW’s objectives and methods, which focused on taking advantage of common sensing 
hardware and data collection processes, using existing data streams when possible in order to 
expand the versatility of the resulting method, and producing metrics of performance that would 
be useful to engineers, planners, and travelers. 

There are some notable ways in which arterial performance monitoring differs from 
freeway monitoring, however.  First, while urban freeways such as those in the Seattle area are 
often equipped with a dense network of sensors, arterial sensor density can vary significantly. 
Arterials can also have varying types of instrumentation, ranging from sophisticated sensors and 
signal systems to very basic sensors or no sensors at all.  While well-instrumented arterials can 
collect a broad array of data, making them easier to monitor, arterial performance on the 
significant number of lane-miles of surface streets with less extensive or less sophisticated 
sensors can be more difficult to evaluate. Because one of the goals of this effort was to develop a 
versatile method, the research described in this paper focuses on the feasibility of monitoring 
performance in common arterial scenarios that use sensors with basic data collection capabilities, 
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e.g., inductive loops (and alternative sensors which provide similar data), while imposing 
minimal requirements for sensor density and placement.  

Second, signalized intersections introduce inherent variability in arterial road 
performance, as vehicles slow and stop for red lights, then resume travel when the light changes. 
Unlike freeway flows that commonly exhibit fluid state changes, at least under recurring 
congestion conditions, arterial flow, by its very nature, displays frequent uneven fluctuations in 
performance over time, even during uncongested conditions. Even under those conditions, the 
methodology described in this paper proposes that one can still make use of detectors such as 
those commonly found on freeway (and arterial) systems, based on the reasonable assumption 
that as congestion varies on a roadway, corresponding sensor values (e.g., the occupancy 
percentage) will generally vary in a consistent way in response.  This is not a new idea; the same 
basic concept is currently used for freeway applications by methods such as TRACFLOW, and 
previous research has explored the use of sensor data for a variety of arterial performance 
analysis applications using various levels of existing instrumentation.  For example, Luyanda, et. 
al., and Gettman, et. al., describe a research effort to employ detector data to develop adaptive 
signal control algorithms that can be used for arterial signal timing analyses and timing 
adjustments (2,3).  Of particular note is the focus of that research on the development of methods 
that can be applied to existing closed-loop signal control systems in a cost-effective manner, 
using typical detector configurations and common detector data types. That objective of 
developing a versatile method that is designed to adapt to existing equipment in commonplace 
field conditions, using commonly available data types, is one that is shared with the research 
described in this paper. 

Other research has focused on the use of detector data for arterial performance 
monitoring applications.  Sharma, et. al. described two methods to estimate arterial performance 
attributes (vehicle delay and queue formation) using a combination of detector data, signal phase 
information, and other parameters (4).  Perrin, et. al. used detector occupancy data to estimate 
vehicle/capacity ratios and arterial level of service for arterial performance monitoring tasks (5).  
In Bellevue, Washington, loop occupancy values were used to estimate arterial segment 
performance for display on an updated online traffic map (6,7).   

Third, the interrupted nature of arterial flow, caused by such factors as signal operations 
and associated queue buildup and dissipation, means that the utility of detector data will be 
affected by the detector’s position relative to the sources of flow interruption (e.g., stop bar 
detector vs. advance detector). For example, the relationship between detector occupancy 
percentage and arterial roadway performance is affected by the location of vehicle queues that 
form while waiting for a red light, relative to the location of that detector.  For stop bar detectors, 
a single vehicle stopped at the associated red light creates an occupancy value of 100 percent 
until the light changes to green and the vehicle departs.  If the detector is placed 100 feet back 
from the stop bar, and again only that one vehicle is present, detector occupancy is zero for the 
same roadway performance scenario.  Thus, depending on detector location, the same roadway 
performance can generate completely different occupancy values. The use of alternate or 
supplementary detector locations has been demonstrated to be useful in addressing this 
ambiguity.  The two methods described by Sharma, et. al. for performance estimation both used 
advance detector data, and one method also used stop bar detector data as well. (4).  Perrin, et. 
al., also used a combination of stop bar and advance detector data to monitor arterials in real time 
(5).  Bellevue, Washington’s traffic maps used occupancy values from loops located 
approximately 100 feet upstream from signal stop bars for their online  monitoring system (6,7). 
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The ambiguity of stop bar data illustrated in the example above suggests that from a 
roadway performance/traffic monitoring perspective, stop bar detectors are not at the ideal 
location for monitoring volume or detecting the extent of traffic queues.  However, the stop bar 
detector is a sensor that is relatively common because it provides the most basic detection—“a 
vehicle is waiting”—required to operate actuated traffic signals. While the use of stop bar 
detector data as a performance monitoring tool represents a “most difficult case” situation, 
successful development of a method that employs data from this commonly found sensor would 
enable that approach to be used in a broader variety of scenarios.  For that reason, data from a 
stop bar detector was the focus of this effort. 

TEST APPROACH 
The focus of this research was on the development of a useful relationship between a) the data 
from an arterial sensor, b) signal state data, and c) the overall level of congestion on the arterial 
segment near the detector for that direction of travel, that could be used to provide a good 
indicator of local arterial performance. Specifically, lane occupancy percentage values from a 
sensor located just upstream from a stop bar for an arterial traffic signal, filtered using signal 
data, were analyzed to determine if they could be a reasonable surrogate value for nearby arterial 
congestion levels. 

Because the research involved analyses of various hypotheses regarding the effects of 
changes in sensor configuration and location on arterial monitoring capabilities, it was 
impractical to use an actual fixed loop installation in the field.  Instead, a microscopic traffic 
simulation model of a real arterial segment was developed to determine whether a predictable 
relationship between volume, occupancy, signal timing and congestion might exist.    

TEST SCENARIO 
The specific location modeled was a 1.6 km (1-mile) segment of a multilane state highway, State 
Route 522 near Bothell, Washington, featuring three successive signalized intersections:  61st 
Avenue NE, 68th Avenue NE, and 73rd Avenue NE (from west to east).  Most of the analyses 
focused on the eastbound segment from 61st Avenue NE to 68th Avenue NE.  The arterial 
scenario being modeled for this research used a common field sensor configuration, namely, 
detectors at each signal’s stop bar.  

The methods explored in this research assumed that a) there would be access to all data 
that could be detectable by sensors in that scenario, and b) there would be a mechanism available 
to collect and store those data.  In many real-world cases, though, data from arterial detectors are 
not stored after use, and even if they can be stored, the proposed research would require 
previously undeveloped mechanisms of data storage and reporting, and new data archiving 
capabilities (software) within the traffic signal control software to support the monitoring 
process.  

MODELING TASKS 
To explore the potential relationship between stop bar sensor data and congestion levels, a 
simulation model was constructed to represent the test segment.  The model was developed by 
using the VISSIM microscopic simulation environment (8) and was calibrated by using the most 
recent available complete data for turning movements, average vehicle volumes, and signal 
timing plans.  

The simulation used the following parameters: 
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• Speed limit =  56.4 km/h (35 mph) 
• Vehicle speed distribution = 50.1 km/h to 65 km/h (31.1 mph to 40.4 mph), with vehicles 
assigned to speeds within that distribution 
• Average vehicle length = 4.7 meters (15.44 feet) 
• Stop bar detector zone length (through movements) = 9.2 meters (30 feet), matching 
existing field installations on SR 522 
• Driver/vehicle following behavior was governed by the Wiedemann 74 model for non-
freeway links (with default values)  
 

The resulting simulation model was set to generate the following output data for each 
test: 

 
• volume and occupancy percentage data for eastbound traffic, from a modeled detector 
located just upstream from the stop bar, at one second intervals. 
• signal event data (a record of changes of signal state, with time stamps) for the eastbound 
signal at the same intersection  
• average per-vehicle segment speed and delay, for a 1-block upstream segment leading to 
the stop bar. (For most tests, the segment length was the intersection spacing of approximately 
0.88 km (0.55 mile).)  Each modeled vehicle's delay is based on a comparison of its actual 
segment travel time to the travel time if there were no other vehicles and no delay due to signals; 
those delays are then averaged. 
• average and maximum queue lengths, for a 1-block upstream segment leading to the stop 
bar.  

ANALYSIS TASKS 
The model was used to perform a sequence of experiments on a single multilane modeled 
approach to a signalized intersection operating at a 180 second signal cycle along the peak 
direction of traffic, specifically the eastbound approach to 68th Avenue NE during one hour of 
the PM peak period, from 4:00 PM to 5:00 PM.  Three hypotheses, representing different 
methods of filtering the sensor data, were tested in each of the experiments.  The hypothesis 
options were designed to address the concern that without some filtering of the stop bar detector 
data, the average occupancy percentage would be biased upward by the normal presence of 
vehicles that were stationary at the stop bar during a red light, making it difficult to distinguish 
between high occupancy values caused by stationary vehicles without congestion, and high 
occupancy values caused by vehicles moving slowly past the stop bar and on through the 
intersection during a green light under congested conditions.  Therefore, to minimize the 
ambiguity produced by that situation, the occupancy data were filtered as follows:  
 
• A “fixed green time” stop bar occupancy was computed, based on the occupancy during 
the first 30 seconds of green signal status in each signal cycle, by comparing the stop bar 
occupancy data from the model’s detector output file to the time stamped signal event data from 
the signal output file;  
• A “green time plus amber time” stop bar occupancy was computed by using occupancy 
data from the entire green and amber time of each signal cycle, rather than just the first 30 
seconds of green time; 
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• For comparison, a baseline “all data” stop bar occupancy was computed, using all data 
regardless of signal phase. 
 

These hypotheses were tested using a matrix of experiments. Each experiment was 
defined by different combinations of 

 
• A specific rate of arriving (upstream) volume (a range of values was used to generate a 
range of traffic congestion conditions, where congestion was defined by the model’s estimates of 
system delay and queues and supported by visual inspection of the associated model outputs) 
• A particular scenario of arterial conditions (coordinated signals, uncoordinated signals, 
heavy turning movements, or a blocking incident/construction) 
• A particular stop bar detector occupancy filtering method, i.e., use all data values, or use 
the first 30 seconds of green values, or use all values during the green and amber phases 
 

Similar tests were also performed at two other intersections on SR 522.  The modeled 
stop bar occupancy values were then compared to the associated modeled traffic conditions to 
determine the extent to which there was a predictable association between specific ranges of stop 
bar occupancy and particular levels of congestion, such that stop bar occupancy could be used as 
a surrogate indicator of nearby congestion. 

OBSERVATIONS 
 
Overall Detector Data Patterns   
A review of the analyses suggested the potential utility of stop bar detector data to monitor 
performance.  As hypothesized, there was a relationship between higher occupancy values and 
heavier congestion (as congestion grew, occupancy values grew), when appropriate filtering of 
the data was used. The pattern could be seen when using data from light, moderate, and heavy 
congestion scenarios.   

Figure 1 illustrates this pattern, showing how the occupancy values (based on the 
green+amber occupancy method) tended to be larger as congestion grew. The figure shows the 
combined results of six simulation runs representing different levels of congestion.  Each run is a 
different color; each circle represents the average occupancy for the green+amber time of one 
signal cycle during that run.  When traffic was light and delay was minimal (e.g., green circles), 
volume and occupancy were both relatively low.  As traffic grew, both volume and occupancy 
also grew (e.g., yellow, orange, red circles).  At approximately 30 percent occupancy, congestion 
built significantly, and while occupancy continued to grow, volume throughput leveled off and 
began to decline. The values for the heavy congestion tests (blue and black circles) continued the 
pattern observed at the low to moderate congestion levels, with occupancy values continuing to 
grow (and volume leveling off and dropping). 

The various test cases showed similar patterns to one another, although some were less 
distinct than others.  
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Figure 1  A comparison of occupancy percentage values (x axis) and corresponding arterial congestion 
(volume is on y-axis) for base case, using data from the all green and amber time per signal cycle. 
 

Effects of Different Occupancy Filtering Methods  
The alternatives tested for filtering occupancy data for each signal cycle were as follows: 
   
• average all occupancy data during each cycle (one-second data) 
• average all occupancy data during the first 30 seconds of the relevant (e.g., eastbound 
thru-traffic) green phase of each cycle 
• average all occupancy data during the entire green and amber phases of each cycle.   
 
A comparison of the three methods showed that the “all data” method produced data that were 
clustered around a combination of high occupancy values and low volume values, as one would 
expect given the method’s inclusion of the red phase data, when vehicles are stopped at the stop 
bar and no vehicles are moving across the stop bar. The 30-second green method appeared to 
noticeably clarify the pattern of occupancy versus congestion. The green+amber method 
produced the clearest association between occupancy and congestion, providing more tightly 
clustered data for a given test case, and clearer patterns at the heavy congestion levels. Figure 2 
compares the “all data” result (triangles) to the green+amber result (circles).  (Unless otherwise 
noted, all results described throughout this report are based on the green+amber method.) 
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FIGURE 2 A comparison of occupancy percentage values (x axis) and corresponding arterial congestion 
(volume is on y-axis) using all data vs. green+amber data. 

 
Exploring Patterns through Data Aggregation  
The results described above suggested a relationship between occupancy and congestion.  Those 
results were based on data aggregated at the individual cycle level, i.e., each data point 
represented the average occupancy at the stop bar detector during the green and amber time of a 
single cycle. For a given test (a specific congestion level), the aggregated cycle data points were 
generally clustered in the volume-occupancy space; however, the clusters were not always 
compact and well defined. This variability made the determination of a clearer relationship 
between the occupancy and congestion more difficult.  The researchers then hypothesized that if 
the data were aggregated at a higher level, transient cycle-level variability of the detector data 
would have a less direct effect on the analysis and perhaps enable a clearer picture to emerge of 
the overall nature of the relationship between detector data and congestion. So, for each 
simulation test run, an aggregate average occupancy percentage for the entire 1-hour test period 
(after the initial start-up time of the run) was computed, rather than cycle-by-cycle values.  As 
for the corresponding congestion indicator, the aggregate value used was the average per-vehicle 
speed (or alternatively, delay) associated with the arterial segment upstream from the stop bar.  

When those two aggregated variables (occupancy and speed) were tracked for each test 
case, and the various test outputs were combined, the results still show some variability, 
particularly at the higher congestion levels (slower speeds), but the overall pattern showed an 
upward trend in occupancy percentage as a function of congestion (represented by average 
speed), as proposed in the original hypothesis.  See Figure 3. 
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FIGURE 3 A comparison of occupancy percentage values (right axis) and corresponding arterial speed (left 
axis), for each test case (scatter plot = occupancy, column = speed). 
 

Given the stop-and-go nature of signalized arterials, it is perhaps not surprising that the 
analyzed data at heavier congestion levels (slower speeds) might show fluctuations in occupancy 
values over time. Figure 4 shows examples of the time-varying patterns of occupancy for 
successive signal cycles during light congestion (green, yellow, orange), moderate congestion 
(red), and heavier congestion (black, blue). At low to moderate congestion levels, average 
occupancy values per signal cycle tended to be more clustered, varying more smoothly over 
time.  At heavy congestion levels, associated occupancy values appeared to vary more noticeably 
over time.  
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FIGURE 4  Variability of average per-cycle occupancy over time, for different congestion levels. 

 
Using Occupancy to Estimate Congestion   
The relationship between occupancy and speed indicated in Figure 3 suggested that average 
occupancy could be used as a general indicator of associated congestion levels.  For example, 
one approach would be to subdivide the occupancy range, with each subrange corresponding to a 
different congestion level (based on speed).  For example, a web-based display of arterial 
conditions might show congestion in three categories:  light, moderate, and heavy.  In that case, 
the occupancy range would also be split into three subsets, one for each congestion category.  As 
traffic conditions varied over time, the occupancy would be tracked, and the congestion level 
corresponding to that occupancy value would be displayed. 

The use of such a relationship could involve the following steps: 
 

1) Produce occupancy vs. speed data, such as that shown in Figure 3, using a particular 
occupancy computation method (e.g., green+amber data).  Verify that the data show an upward 
trend in occupancy together with a downward trend in speed.   
2) If the occupancy data have some variability, consider smoothing the data to produce a 
central trend of the occupancy data (vs. congestion) that is less influenced by those fluctuations. 
(See note below following step 4.) 
3) Define congestion categories on the basis of speed on the arterial segment being 
analyzed.  For example, the light/moderate/heavy congestion display website described above 
might use categories based on Highway Capacity Manual guidelines for Level of Service 
standards on that type of arterial.  Or, a more direct approach might be to simply specify speed 
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ranges (0 to 10 mph, 10 to 20 mph, 20 to 30 mph etc.) that are either consistent with other 
existing analytical practices, or coincide with existing local performance standards.  Simple 
speed categories also have the benefit of being more easily interpretable by travelers. 
4) Determine the range of occupancy values that correspond to each congestion category 
defined in step 3. Do this by looking at the sorted distribution of congestion delay values 
(speeds) across all the test cases and dividing them into groups by congestion level (i.e., each 
specified speed range from step 3), then looking at the corresponding occupancy range. The 
result is a functional relationship between occupancy ranges and speed/congestion ranges (e.g., 0 
to 10 mph corresponds to occupancy values of between M and N percent).  Once this function 
has been established, it can then be applied to a performance monitoring application. 

 
Note that in this process, the development of a function based on subdivisions of the 

occupancy range requires the existence of a one-to-one relationship between occupancy and 
congestion, i.e., occupancy should grow monotonically as congestion grows (or as speeds slow).  
In reality, though, some variability of the field data might occur.  That is why some type of 
smoothing operation may be desirable, one that removes transient spikes but still displays the 
overall character and trend of the data.  Although this smoothing approach helps facilitate the 
specification of the threshold values for each congestion category, the precision of the category 
boundary definitions will be reduced, something that should be considered when defining the 
categories. 

 
An Application of the Occupancy versus Congestion Relationship   
The following is an example application of the approach described above. 
 
1) Produce occupancy vs. speed data.  Figure 5 shows an example of such data.  The graph 
also suggests the presence of an occupancy trend that grows with congestion.   
2) Because the occupancy data have some variability, the data are smoothed to reduce the 
fluctuations by applying a polynomial fit to the data. 
3) Congestion levels are defined as speed ranges (for example): 
 
Light congestion  >20 mph 
Moderate congestion  10 to 20 mph 
Heavy congestion  <10 mph 
 
4) For each congestion category above, the corresponding occupancy value range is 
determined by using the data in Figure 5.  The process is shown in graphical form in that figure, 
where each speed threshold value is matched to the closest corresponding occupancy value. In 
this example, the smoothed value associated with that occupancy value is used instead.  
5) The resulting function is  
 
Speed   Occupancy 
>20 mph  0 to 23 percent 
10 to 20 mph  23 to 35 percent 
< 10 mph  >35 percent 
 
6) Each incoming occupancy data point can then be assigned to one of the speed categories.  
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Note that depending on the smoothing method chosen, occupancies do not necessarily 

monotonically grow with congestion, which means that the threshold values may be ambiguous.  
Also, different smoothing options can produce different thresholds.  This illustrates the limits to 
precision of the congestion category boundaries with this method. 
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Figure 5  Determining congestion category thresholds from a comparison of occupancy percentage values 
(right axis) and corresponding arterial speed (left axis) from each test case, using a polynomial smoothing fit 
and a simple 10 mph speed range. 
 
Results at Other Locations  

Similar tests were also performed at two other intersections, 61st Avenue NE and 73rd Avenue 
NE, both in the eastbound direction. The results at the two locations were consistent with those 
from the original test location, showing data points that either followed the pattern of data from 
the primary test location or were a logical extension of the pattern to higher congestion levels. 
Figure 6 shows the data from the two locations (shown as solid markers) superimposed on the 
data from the primary test location (open markers).  The 61st Avenue NE samples are shown as 
solid squares, while 73rd Avenue NE data are shown as solid triangles.  
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FIGURE 6  A comparison of occupancy percentage values (x axis) and corresponding arterial congestion 
(volume is on y-axis) for base case, plus two new locations. 

IMPLEMENTATION REQUIREMENTS 
The method described above would require the following: 
 
Supporting Data: 
• Stop bar sensors capable of producing occupancy percentage values at the desired level 
of frequency 
• Signal state data and signal event time stamps or durations 
• A data storage capability (or data transfer capabilities to a central facility) 
 
Method:   
• A specified congestion categorization approach (e.g., speed ranges) 
• Threshold occupancy values for each congestion category 
 
Processing: 
• Software to filter and smooth data as required. 
 

The supporting data are producible by a basic sensor at the stop bar. The implementation 
software and associated parameters would have to be developed or specified by the user.  Given 
the relatively straightforward algorithms employed in this method, the processing software 
should be relatively inexpensive to develop. 
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A more significant upgrade requirement might be the data archiving capability. The 
proposed method requires some storage and processing, performed centrally or on-site. For 
arterial networks that either did not store their data locally at all, or did store the data but did not 
centrally archive the values, some mechanism to transfer data would also be required.  Either 
way, the data would need to be archived to support the desired performance monitoring 
activities. 

The signal data types required would likely involve a change of traffic signal controller 
software to record volume/occupancy by using variable time frames, and to store along with 
those time frames the length of the actual green+amber condition.  (That is, the proposed 
approach to performance monitoring is to use stop bar statistics of volume and occupancy 
collected only when that phase is green and amber.  To do this would require the traffic signal 
system to no longer use a “fixed time” reporting framework but, instead, one that varied with 
signal phase lengths.)  This would be particularly important when some type of adaptive traffic 
control was used (including actuated and semi-actuated traffic signals and signal timing plans) 
that did not have fixed phase lengths.  Smaglik outlined the potential benefits of signal event-
based data for intersection analyses, and described a method by which a general purpose data 
collection module for an existing signal controller could provide signal event-based detector and 
signal state data (9). 

The good news is that implementing this new capability to support arterial monitoring 
would allow traffic signal engineers to not only examine the level of congestion present but also 
determine how signal timing algorithms were actually being used in the field and thus might be 
modified to improve congestion. For example, if there is a permissive phase extension of 20 
seconds, how often are all 20 seconds being used?  How often is none of that possible extension 
being used, and why was it not used?  Was it the result of a pedestrian button on a perpendicular 
approach that forced off the signal, or a lack of traffic volume on that approach while a 
conflicting approach had a waiting vehicle? The result would be a capability to evaluate not only 
how congested each approach had become but how arterial signal timing plans were actually 
being used. This would provide engineers with detailed diagnostic information that could be used 
to tune timing plans to decrease delay without having to pay for new short duration traffic data 
collection. 

IMPLEMENTATION ISSUES  
While the tests conducted thus far suggest that this method is potentially useful, there are other 
methodology development issues that should be considered. 

Method Calibration and Robustness 
The results described in this report were based on simulation of a typical 1-mile arterial section.  
While the analyses suggest that the results were consistent for different intersections and 
approach directions in this single model, it would be desirable to perform additional tests to 
further validate and calibrate the proposed monitoring methodology to help confirm the general 
nature of the method. 

Stop Bar Limitations 
It may be that data from a stop bar detector alone is sufficient to estimate “intersection approach” 
performance, but not overall arterial performance.  The approach described in this report could 
be a good “overall” arterial performance metric as long as delays are primarily intersection 
based, and not from mid-block occurrences.  In addition, because we only have measurements at 
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the intersection, we can say that the signal has failed, but we cannot say that one is likely to sit 
through one, two, three or more cycles to get through that signal.  One alternative that might 
provide additional monitoring capabilities might be to look at the volume associated with each 
green phase, the green phase length, and the number of signal cycles in a row that the cycle has 
shown “failed” performance levels.    
 
Variability of Occupancy during Reporting Process    
In the previous discussion, occupancy variability was addressed through smoothing techniques to 
better define the central trend of the data, for the purposes of establishing the threshold 
occupancy values used by that method.  However, occupancy variability over time can be an 
issue when one applies the method as well.  Namely, how should the method address data 
variability when arterial performance is reported?  Should short-duration oscillations be 
considered useful indicators of performance, or are they transient values that distract from a 
more important goal of showing the central tendency of the traffic conditions? There are several 
options to address this: 
 
• Aggregate occupancy data over time to remove the influence of short-term oscillations.   
• Use broader congestion categories that cover larger subsets of the occupancy range, so 
that occupancy variability is less likely to cause oscillations in reported performance.  However, 
the result would also be less specific.  
• Reclassify the congestion categories to include the variability, e.g., develop new 
categories that represent transition categories between existing categories. 
• Do not change the original data. 
 

The application might dictate the approach used. If the required time increment for 
monitoring performance is larger, then aggregate values might be sufficient. 

CONCLUSIONS 
This research provided additional understanding of the feasibility of using traffic data from basic 
stop bar detectors, combined with signal state data, to estimate arterial traffic conditions 
(congestion) in a cost-effective manner.  From the results thus far, the use of occupancy values 
from a stop bar detector during the green and amber signal states shows promise as an indicator 
of arterial performance, and the hardware and analytical requirements do not appear restrictive. 
Additional testing of the robustness of this method would be beneficial, to further document the 
applicability of the method for different scenarios. 
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